Contribution of voltage-dependent potassium channels to the somatic shunt in neck motoneurons of the cat.

نویسندگان

  • D M Campbell
  • P K Rose
چکیده

The specific membrane resistivity of motoneurons at or near the soma (Rms) is much lower than the specific membrane resistivity of the dendritic tree (Rmd). The goal of the present experiments was to investigate the contribution of tonically active voltage-dependent potassium channels at or near the soma to the low Rms. These channels were blocked with the use of intracellular injections of cesium. Input resistance (RN), Rms/Rmd, a conductance representing voltage-dependent potassium channels on the soma, GK, and a conductance attributed to damage caused by electrode impalement, GDa, were estimated from voltage responses to a step of current. The effect of intracellular injections of cesium on electrotonic structure was determined with the use of two strategies: 1) a population analysis that compared data from two groups of motoneurons, those recorded with potassium acetate electrodes (control group) and those recorded with cesium acetate electrodes after the motoneurons were loaded with cesium; and 2) an analysis of changes in electrotonic structure that occurred over the course of multiple injections of cesium or during similar periods of time in control cells. RN of control and cesium-loaded motoneurons was similar. Over the course of the recordings, RN of control cells usually increased and this increase was associated with a hyperpolarization. In contrast, increases in RN after successive injections of cesium were closely linked to a depolarization. At corresponding membrane potentials, Rms/Rmd of cesium-loaded motoneurons was greater than Rms/Rmd of control motoneurons. Over the course of cesium injections, Rms/Rmd increased and the membrane potential depolarized. In contrast, increases in Rms/Rmd observed during the course of recordings from control cells were associated with a hyperpolarization. Compared with control cells at corresponding membrane potentials, GK was less in cesium-loaded cells. Increases in GK that occurred over the course of recordings in control cells were closely coupled to a depolarization. In cesium-loaded cells, GK usually decreased as the cell depolarized during the injections. In control cells, increases in GDa that occurred during the recording period were closely coupled to a depolarization. In contrast, changes in GDa that occurred during cesium injections were not related to the change in membrane potential and did not explain the corresponding changes in Rms/Rmd and membrane potential. The results of this study indicate that voltage-dependent potassium channels contribute to the somatic shunt (low Rms) in neck motoneurons and provide a voltage-dependent mechanism for the dynamic regulation of motoneuron electrotonic properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent sodium and calcium currents in rat hypoglossal motoneurons.

Voltage-dependent persistent inward currents are thought to make an important contribution to the input-output properties of alpha-motoneurons, influencing both the transfer of synaptic current to the soma and the effects of that current on repetitive discharge. Recent studies have paid particular attention to the contribution of L-type calcium channels, which are thought to be widely distribut...

متن کامل

Facilitation of somatic calcium channels can evoke prolonged tail currents in rat hypoglossal motoneurons.

Voltage-dependent persistent inward currents (PICs) make an important contribution to the input-output properties of alpha motoneurons. PICs are thought to be mediated by membrane channels located primarily on the dendrites as evidenced by prolonged tail currents following the termination of a voltage step and by a clockwise hysteresis in the whole cell inward currents recorded in response to d...

متن کامل

Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate  f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...

متن کامل

O3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice

The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....

متن کامل

Contribution of potassium channels, beta2-adrenergic and histamine H1 receptors in the relaxant effect of baicalein on rat tracheal smooth muscle

Objective(s): Baicalein, a compound extracted from a variety of herbs, showed various pharmacological effects. This study evaluated the relaxant effects of baicalein and its underlying molecular mechanisms of action on rat’s isolated tracheal smooth muscle.Materials and Methods: Tracheal smooth muscle were contracted by 10 μM methacholin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 77 3  شماره 

صفحات  -

تاریخ انتشار 1997